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Abstract. We introduce tropical analogues of the notion of volume of polytopes, lead-
ing to a tropical version of the (discrete) classical isoperimetric inequality. The planar
case is elementary, but a higher-dimensional generalization leads to an interesting
class of ordinary convex polytopes, characterizing the equality case in the isoperimet-
ric inequality. This study is motivated by open complexity questions concerning linear
optimization and its tropical analogs.
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1 Introduction

The classical isoperimetric inequality states that the bounded planar region with given
perimeter which maximizes the area is the circular disk. Its discrete version, from which
a proof of the smooth result can be derived, says that the triangle with fixed perimeter
which maximizes the area is equilateral; see [4] for a nice survey. A minor variation of the
same problem asks to maximize the area for fixed diameter (instead of fixed perimeter),
and it has the same result. The tropical analog is a statement about the tropical convex
hull of three points in the plane. Our main contribution is a generalization of that result
to arbitrary dimensions.

This work is motivated by research on delicate complexity issues related with classi-
cal linear programming. In [3] a family of linear programs was constructed which ex-
hibits central paths with unusually large total curvature. These linear programs provide
counter-examples to a “continuous analog of the Hirsch conjecture” by Deza, Terlaky
and Zinchenko [11]. The key idea in [3] was to obtain a lower bound for the total cur-
vature of the central path by means of a piecewise-linear curve which can be associated
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with the tropicalization of linear program. In this way discrete notions of curvature,
which make sense from a tropical geometry perspective, give rise to non-trivial metric
estimates for classical curves. This lead us to further investigate aspects of tropical ge-
ometry in the spirit of discrete differential geometry [5]. In particular, we are interested
in tropical versions of the isoperimetric inequalities.

Tropical linear algebra is concerned with (max,+)- or (min,+)-analogs of classical
linear algebra. A tropical polyhedral cone is a set of points in Rd which are tropical linear
combinations of finitely many generators. Its image under the projection modulo the
all-ones vector is a tropical polytope; see [8, 21] and the references there for an overview of
the theory. The search for a tropical analogue of volume lead us to propose a new notion
which captures the metric intuition of tropical polytopes well enough. Our main result
shows that the tropical simplices which maximize this tropical volume for fixed tropical
diameter are convex in the ordinary sense, i.e., these are the polytropes studied in [17].
The polytropes form the combinatorial building blocks of tropical convexity [21, §5.2]. In
combinatorial optimization they arise naturally in the study of shortest path algorithms
[23, §8.3], [24], [18]. Furthermore, they are isomorphic to tropical eigenspaces (see e.g. [7,
Chapter 4]), play a role in the theory of semigroups [16] and occur in statistical ranking
[25]. It is known that, up to symmetry, there is precisely one generic combinatorial
type of polytropes in R3/R1 [17]. The generic polytropes in R4/R1 were classified
in [15] (see also [26]); there are precisely six types. However, it turns out that, at least in
these dimensions, only one generic type maximizes the tropical volume for fixed tropical
diameter.

A second approach to obtain a tropical analogue of volume is to employ the “dequan-
tization” method [19], thinking of a tropical polytope as a log-limit of a family of classical
polytopes, and defining the limit of the normalized volumes of these polytopes. We shall
see that the volume obtained in this way also has several good properties. For instance,
it turns out to be an idempotent measure on the space of generic tropical polytopes and
easy to compute. However, this yields a degenerate isoperimetric inequality.

2 Tropical distance and volume

For two points v, w ∈ Rd the tropical distance is the number

tdist(v, w) := max
{
(vi − wi) | i ∈ [d]

}
−min

{
(vi − wi) | i ∈ [d]

}
= max

i,j∈[d]

∣∣vi − wi + wj − vj
∣∣ .
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This number was shown in [8] to play the role of the Euclidean distance in the tropical
setting. It is a special instance of Hilbert’s projective metric. We have

tdist(1 + v, w) = tdist(v, w) and

tdist(u + v, u + w) = tdist(v, w) for all u ∈ Rd .
(2.1)

In particular, this entails that tdist induces a metric on the tropical projective torus Rd/R1.
Moreover, we have

tdist(λ · v, λ · w) = |λ| · tdist(v, w) for all λ ∈ R . (2.2)

This distance function is valid for both, min and max, as the tropical addition, denoted
by ⊕ in the sequel.

Now let A = (aij) ∈ Rd×d be a square matrix. We write ai· for the ith row and a·k for
the kth column of A. The tropical diameter of A is the maximum

tdiam A := max
i,j∈[d]

tdist(ai·, aj·) = max
i,j,k,`

∣∣aik − ai` + aj` − ajk
∣∣ .

Notice that the tropical diameter is the same as the diameter of a complete metric graph
on d nodes with non-negative edge lengths. Further, the tropical diameters of a square
matrix and its transpose agree.

Example 1. The tropical diameter of the ordinary d×d-unit matrix, with ones on the
diagonal and zeros elsewhere, equals two.

Observe that the tropical diameter does not change if the rows or columns of A are
permuted.

Definition 2. We now define the tropical volume of A as the expression

tvol A :=

∣∣∣∣∣∣ ⊕
σ∈Sym(d)

∑ ai,σ(i) −
⊕

τ∈(Sym(d)−σopt)

∑ ai,τ(i)

∣∣∣∣∣∣ ,

where σopt is an optimal solution of the first optimization in the above.

In other words, σopt is a permutation for which ∑ ai,σopt(i) coincides with the tropical
determinant of A. Like the tropical diameter also the tropical volume is insensitive to
transposing the matrix A or to any reordering of its rows or columns. The tropical
volume can be computed in O(d3) time [6, §5.4.1].

Unlike the tropical diameter, which is an established notion, our definition of the
tropical volume is new, at least under this name. Since our results below rely on this
notion in a crucial way, a few words are in order. The classical volume has its foun-
dation in measure theory, and the classical determinant yields the (normalized) volume
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of a simplex. Tropical polytopes arise by “dequantization” of classical polytopes, or, if
one prefers, as images of ordinary convex polytopes over real Puiseux series under the
valuation map; this was first observed by Develin and Yu [10], and this is the point of
departure of [3]. This leads to a notion of dequantized tropical volume with several good
properties, but we defer the discussion to Section 4.

We prefer our definition of the tropical volume, tvol, since it leads to more interesting
isoperimetric problems. The fact that it captures an essential metric property of tropical
polytopes can be seen from the following observations. First, the tropical volume is a
higher-dimensional generalization of the tropical distance function: indeed, in the linear
case d = 2 the tropical diameter and the tropical volume agree, i.e., tdiam A = tvol A if
A is a 2×2-matrix. More importantly, the tropical volume provides a measure of non-
singularity: it vanishes if and only if the rows (or the columns) of A are contained in a
tropical hyperplane [22, Lemma 5.1]. In terms of statistical physics, the tropical volume
is an energy gap, which appeared in the analysis of a non-standard optimal assignment
algorithm by Kosowsky and Yuille. Their key result [20, Theorem 9] estimates the speed
of convergence by an increasing function of the energy gap. Characterizing matrices
with a maximal energy gap, knowing bounds on their entries, is precisely a tropical
isoperimetric problem.

We call two square matrices equivalent if they can be transformed into one other
by row and column permutations or by operations as in (2.1). Up to reordering the
rows and columns we may assume that the identity permutation attains the tropical
determinant. Since neither the tropical diameter nor the tropical volume changes if we
translate each column by the same vector, we may assume that the first column is the
vector (1, 0, 0, . . . , 0). Further, we can (ordinarily) add any multiple of 1 to each column
without changing the tropical diameter, the tropical determinant or the tropical volume.
Thus we may assume that each column, except for the first, begins with a zero. We call
a matrix max-standard if the identity is an optimal permutation and if the first row and
column read (1, 0, 0, . . . , 0). Each square matrix is equivalent to a max-standard matrix.
In view of the Example 1 we will subsequently normalize the tropical diameter to two.

Theorem 3 (Tropical isodiametric inequality). Assume that⊕ = max is the tropical addition.
Let A ∈ Rd×d be a matrix with tropical diameter two. Then the tropical volume does not exceed
two. Moreover, if tvol A = 2 then A is equivalent to a max-standard matrix whose coefficients
aij satisfy the following conditions:

(i) −1 6 aij 6 1,
(ii) aii = 1,

(iii) aji = −aij for i 6= j, and
(iv) −1 6 aij + ajk + aki 6 1 for i, j, k distinct.

Conversely, the tropical diameter and the tropical volume of each standard matrix satisfying these
four conditions both equal two.
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We call a matrix min-standard if the identity is an optimal permutation and if the first
row and column read (0, 1, 1, . . . , 1). Each square matrix is equivalent to a min-standard
matrix.

Corollary 4 (Tropical isodiametric inequality). Assume that ⊕ = min is the tropical addi-
tion. Let B ∈ Rd×d be a matrix with tropical diameter and tropical volume two. Then B is
equivalent to a min-standard matrix whose coefficients bij satisfy the following conditions:

(i) 0 6 bij 6 2,
(ii) bii = 0,

(iii) bij + bji = 2 for i 6= j, and
(iv) 2 6 bij + bjk + bki 6 4 for i, j, k distinct.

Conversely, the tropical diameter and the tropical volume of each standard matrix satisfying these
four conditions both equal two.

In the sequel we will be concerned with non-negative d×d-matrices B which satisfy
the conditions (ii), (iii) and (iv) in Corollary 4. We call any matrix which is equivalent
to such a matrix tropically near-isodiametric (with respect to min). The matrix is tropically
isodiametric if additionally the tropical diameter and the tropical volume are equal to
two.

Proposition 5. Let B ∈ Rd×d be a tropically near-isodiametric matrix with respect to ⊕ = min
as the tropical addition. Then the matrix equation B�min B = B holds.

Notice that here we do not assume B to be standard. That is, we do not specify the
first row and column. Also we do not require the upper bound in property (i), such that
and the coefficients may be larger than two.

The conical tropical convex hull of a d×m-matrix M, denoted as tpos M, is the set
{M � x | x ∈ Rm}. Since this is a homogeneous notion we usually consider tpos M
as a subset of the tropical projective torus Rd/R1. The following statement is phrased
without an explicit reference to a tropical addition. It works in both cases.

Corollary 6. Let M ∈ Rd×d be near-isodiametric. Then the conical tropical convex hull of the
columns (or the rows) of M is convex in the ordinary sense, i.e., it is a polytrope.

Note that, even for general B, the Kleene star B∗ is the shortest path matrix for the
digraph on d nodes whose weights are given by the coefficients of B; see also [18, §3.4]. A
polytrope is isodiametric if it arises from a tropically isodiametric matrix via Corollary 6.

Example 7. For d = 3 any isodiametric min-standard matrix looks like

B(λ) =

0 1 1
1 0 λ

1 2− λ 0

 ,
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where 0 6 λ 6 2. The planar polytropes which arise as the min-tropical convex hulls
of the columns of the matrices B(λ) are shown in Figure 1 for various values of λ. The
red points mark the non-redundant generators, i.e., the columns, while the white points
are the pseudo-vertices, generically. Going from min to max means to interchange the
roles of the red and the white points. For the non-generic cases λ = 0 and λ = 2 the
non-redundant generators for min and max agree.

λ = 0 λ = 1
2 λ = 1 λ = 3

2 λ = 2

Figure 1: Isodiametric polytropes in R3/R1

As shown in Example 7 the isodiametric polytropes (with fixed diameter) depend
on one real parameter which is, moreover, bounded between zero and two. In the gen-
eral case we have ((d − 1)2 − (d − 1))/2 = (d2 − 3d)/2 + 1 free parameters which are
constrained by linear inequalities. That is, the isodiametric polytropes in Rd/R1 are
parameterized by a convex polytope Iso(d) of that dimension. While this is naturally
embedded in a real vector space of dimension d2, we usually look at its faithful projec-
tion into the coordinate directions given by the coefficients bij for 2 6 i < j 6 d − 1.
Notice that, up to this projection, Iso(d) is contained in the dilate 2 · [0, 1]d−1 of the unit
cube by a factor of two. The polytope Iso(3) is the segment [0, 2].

3 Combinatorics of near-isodiametric polytropes

Let B = (bij) be an d×d-matrix which is tropically near-isodiametric with respect to min.
We want to analyze the polytrope P := tpos(B) seen as an ordinary convex polytope in
Rd−1. That latter space is identified with Rd/R1 via the map (x1, x2, . . . , xd) 7→ (x2 −
x1, . . . , xd − x1). Our point of departure is the exterior description

P(B) =
{

x ∈ Rd ∣∣ xi − xj 6 bij for i 6= j
}

(3.1)

as a weighted digraph polyhedron; see [21, §5.2] and [18]. Since B = B∗ is a Kleene star
all these inequalities are tight; this classical result follows, e.g., from [13, §2.3.3]. The
one-dimensional lineality space of P(B) is R1. Let us set P′(B) := P(B)/R1.

Proposition 8. Assume that the inequalities (iv) in Corollary 4 are strict, i.e.,

2 < bij + bjk + bki < 4 for all i, j, k .

Then P′(B) is an ordinary polytope of dimension d− 1 with exactly d(d− 1) facets.
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Any real d×n-matrix M induces a height function on the vertices of the product
of simplices ∆d−1 × ∆n−1. The induced regular subdivision is dual to (the covector
decomposition of) the conical tropical convex hull of the columns of M; see [21, §5.2]
and [18]. In the generic case that subdivision is a triangulation. Our main result says that
there are isodiametric matrices which are generic.

Theorem 9. For each n > 3 there exist isodiametric matrices B such that the polytrope P′(B)
is a simple ordinary polytope with exactly (2d

d ) vertices. In this case, the regular subdivision of
∆d−1 ×∆d−1 induced by B is a triangulation.

Example 10. The matrix

B =


0 1 1 1
1 0 5/4 3/4
1 3/4 0 5/4
1 5/4 3/4 0


is a tropically isodiametric matrix, which is standard with respect to min, and which is
generic. The resulting polytrope P′(B), shown in Figure 2, is combinatorially equivalent
to the second example in [17, Figure 2]. It belongs to Class 1 in the classification [15,
§3.9]: among the 12 ordinary facets there are three quadrangles, six pentagons and three
hexagons, and there is no pair of adjacent hexagons.

Figure 2: Isodiametric polytrope in R4/R1

Remark 11. A computation with polymake [14] reveals the following: None of the other
four combinatorial types of maximal polytropes for n = 4 from [17, Figure 2] admits a
tropically isodiametric realization, nor does the sixth type, which was found by Jiménez
and de la Puente [15, Example 21].
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4 Tropical volume arising from dequantization

We now investigate a different notion of “volume”, which is also applicable to tropical
geometry. It arises from “dequantization”, a term coined by Maslov for a procedure
in which tropical objects are obtained as the log-limits of classical objects; see [19]. A
related procedure is known as Viro’s method [27] in real algebraic geometry.

In this approach, tropical numbers can be thought of as the images of the elements
of a non-archimedean field under the valuation map. Following [2, 3], we will work
with a field K of real valued functions in a real parameter t. We assume that K is
a Hardy field whose elements are germs at infinity of real valued functions of t that
are definable in a fixed polynomially bounded o-minimal structure. Then, the valuation
of a function f ∈ K is defined by val f := limt→∞(log t)−1 log | f (t)|. The map val
is a non-archimedean valuation, meaning that val 0 = −∞, val f g = val f + val g, and
val f + g 6 max(val f , val g). Moreover, the latter inequality becomes an equality if
f , g ∈ K>0, the subset of non-negative functions of K. We will assume that every
function tr with r ∈ R belongs to K. Then, val yields a surjective morphism of semifields
from K>0 to the tropical semifield T (with ground set R ∪ {−∞} and maximum as
addition).

The notions of convex hull, polyhedra, etc., make sense over K. In particular, if
A = (aij) ∈ Kd×m, we denote by P := convA the polytope generated by the columns
of A. By evaluating the matrix A(t) = (aij(t)) at a real parameter t, we obtain a
polytope P t := convA(t), so A encodes a parametric family of ordinary polytopes. We
will denote by Ā the (d + 1)× m matrix obtained by adding an identically one row to
the d×m matrix A, putting this new row at the top of the matrix. If A has m = d + 1
affinely independent columns, P is a simplex with volume (d!)−1|det Ā|. In general,
the volume of P can be computed by triangulating the configuration of points given by
columns of A into simplices, just like over R.

If A = (aij) ∈ Td×m, we say that A = (aij) ∈ Kd×n
>0 is a lift of A if valA = A. While

we worked with tropical cones and projective coordinates in Section 2, now it is more
convenient to consider affine notions as follows. We call affine tropical convex hull of the
columns of A, denoted as tconv A, the set of vectors of the form A� x where x ∈ Tm is
such that maxi xi = 0. We will now use the notation Ā to denote the (d + 1)×m matrix
obtained by adding an identically zero row to A (still on the top row). Note also that if
A = valA, we have val Ā = Ā. In this way, when the entries of A are finite, tconv A can
be identified to the cross section by the hyperplane x1 = 0 of the conical tropical convex
hull, tpos Ā, defined in Section 2.

A result of Develin and Yu [10] implies that every affine tropical polytope P is of the
form valP , where P = convA for some matrix A with entries in K. This motivates
the following definition of tropical volumes of a polytope in terms of log-limits.

Definition 12. Let A ∈ Td×m. The upper and lower dequantized tropical volumes of A
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are defined by qtvol+ A := sup{val volA | valA = A} and qtvol− A := inf{val volA |
valA = A}, respectively.

Given a square matrix C = (cij) with entries in T, we denote by tdet C the tropical
determinant of C (i.e., the value of the optimal assignment problem with weights cij).
We have the following characterization of the upper dequantized tropical volume.

Theorem 13. If A ∈ Td×m, then

qtvol+ A = max
I⊂[m],|I|=d

tdet A[I] ,

where A[I] denotes the maximal submatrix of A obtained by selecting the columns in I.

We shall say that a matrix A is tropically sign-generic if, in the optimal assignment
problem associated to any maximal square submatrix of A, all the optimal permutations
have the same parity.

Theorem-Definition 14 (Dequantized tropical volume). If A ∈ Td×m is such that Ā is
tropically sign generic, then, qtvol+ A = qtvol− A, and we denote by qtvol A, the dequantized
tropical volume of A, this common value. Moreover, for any lift A of A, we have

lim
t→∞

log vol convA(t)
log t

= qtvol A . (4.1)

The next proposition shows that qtvol A depends only of the affine tropical convex
hull of A.

Proposition 15. Let A ∈ Td×m. Suppose that A or Ā is tropically sign generic, that B ∈ Td×p,
and that tconv(A) ⊂ tconv(B). Then qtvol+(A) 6 qtvol+(B). In particular, if tconv(A) =
tconv(B) and if Ā, B̄ are both tropically sign generic, then qtvol(A) = qtvol(B).

This proposition will allow us to define, for those tropical polytopes that can be writ-
ten as P = tconv(A) with A tropically sign generic, the dequantized volume qtvol(P) :=
qtvol(A).

Example 16. The tropical genericity condition cannot be dispensed with. Consider

A =

(
0 0 0
0 0 0

)
and B =

(
0 −1 −2
0 −2 −4

)
.

We have tconv A ⊂ tconv B. However, qtvol+ A = 0, whereas qtvol+ B = −1.

Corollary 17. Let A ∈ Td×m, P := tconv A, B ∈ Td×p, Q := tconv B, C := (A, B) and
suppose that C̄ is tropically sign generic. Then

qtvol
(
tconv(P ∪Q)

)
= max

(
qtvol(P), qtvol(Q)

)
.



10 Jules Depersin, Stéphane Gaubert and Michael Joswig

In other words, the dequantized tropical volume is an idempotent measure [19, 1]. Dyer
and Frieze [12] showed that computing the volume of a classical polytope given by its
vertices is ]P hard. This is in contrast with the tropical situation.

Corollary 18. Let A = (aij) ∈ Td×m. The upper dequantized tropical volume qtvol+ A can be
computed in strongly polynomial time.

The dequantized tropical volume can be used to bound the volume of ordinary poly-
topes. Instead of considering the non-archimedean valuation val over K, we shall con-
sider the archimedean valuation log | · | over R. Given a matrix A = (aij) ∈ Rd×m

>0 , we
denote by Log A the matrix obtained by applying the archimedean valuation entrywise.

Theorem 19. Let A = (aij) ∈ Rd×m
>0 . Then

vol conv A 6 α(d + 1) exp(qtvol+(Log A)) , (4.2)

where α is the number of maximal cells of an arbitrary triangulation of the point configuration
given by the columns of A.

The size of any triangulation of A, and thus also α, is bounded from above by
O(md(d+1)/2e); see [9, Cor. 2.6.2].

It is instructive to compare the dequantized tropical volume qtvol± with the tropical
volume tvol. When A ∈ T(n−1)×n, the quantities tvol Ā and qtvol± A provide different
“measures” of the singularity of the matrix Ā. Indeed, one can check that qtvol− A =
qtvol+ A if and only if Ā is tropically sign generic, meaning that all maximizing permuta-
tions in tdet Ā have the same sign, whereas tvol Ā > 0 if and only there is only one max-
imizing permutation. Therefore, tvol Ā > 0 implies that qtvol+ A = qtvol− A, but not
vice versa. The dequantized tropical volume has several properties to be expected from
a measure on tropical polytopes (like being defined for the convex hull of any number of
points in general position and being an idempotent measure). However, the isoperimet-
ric inequality for the dequantized volume may read qtvol+ A 6 (n− 1)×maxij aij. This
leads to more degenerate isoperimetric results, since the matrices achieving the equality
do not have such a rigid structure as the maximizing matrices in Theorem 3.
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